跳到主要内容

4 篇博文 含有标签「Email」

查看所有标签

· 阅读需 12 分钟

As a developer for a popular e-commerce website, you know that integrating with external APIs is a common requirement for modern applications. However, if your website's database is built using MySQL, you may face limitations when it comes to making HTTP requests. To overcome this challenge, you can build a custom MySQL pipeline that can send HTTP requests to the API. In this article, we will explore how to build such a pipeline using Vanus, a lightweight tool designed to stream data from MySQL databases to HTTP endpoints. With Vanus, you can easily integrate your MySQL database with external APIs, allowing your application to benefit from the latest data and functionality available in third-party services.

Table of content

Event Streaming

Event streaming is a technology that has gained significant popularity in modern applications. It involves the continuous and real-time processing of events or data generated by various sources. These events could include user actions, system events, sensor data, and more. By processing these events in real-time, applications can quickly respond to changes and make decisions based on the most up-to-date information.

Event streaming is particularly important in modern applications where data volumes are high and the need for real-time processing is critical. Traditional batch processing methods, where data is collected and processed in batches, can result in latency and delay in processing important events. Event streaming allows for a more responsive and real-time approach to data processing, which is essential in today's fast-paced digital landscape.

Vanus is an open-source tool designed to facilitate event streaming from various sources. It allows users to collect, filter, and route events to different destinations in real-time. Vanus enables users to build flexible and robust event streaming pipelines that can be easily integrated into modern applications.

MySQL

Setting up a MySQL database

Setting up a MySQL database is the first step towards building a custom MySQL pipeline. Here's a detailed explanation of how to set up a MySQL database:

  1. Download and Install MySQL: The first step is to download and install MySQL on your computer. You can download MySQL Community Edition for free from the MySQL website. Make sure to choose the correct version for your operating system.
  2. Configure MySQL: After installing MySQL, you need to configure it. During the installation process, you will be prompted to set a root password for the MySQL server. Make sure to remember this password, as you will need it later.
  3. Start MySQL Server: Once you have installed and configured MySQL, you need to start the MySQL server. To do this, open a terminal or command prompt and run the following command:
Copy code
sudo systemctl start mysqld
  1. This command starts the MySQL server and enables it to run in the background. Log in to MySQL: To interact with the MySQL server, you need to log in to it using the root password you set during the configuration process. To do this, run the following command:
mysql -u root -p
  1. This command logs you in to the MySQL server as the root user. Create a Database: Once you are logged in to the MySQL server, you can create a new database using the following command:
Copy code
CREATE DATABASE <database_name>;
  1. Replace <database_name> with the name you want to give your database. Create a Table: After creating a database, you need to create a table in the database. Tables are used to store data in a MySQL database. You can create a table using the following command:
Copy code
CREATE TABLE <table_name> (
<column_name> <data_type> <constraint>,
<column_name> <data_type> <constraint>,
...
);
  1. Replace \<table_name> with the name you want to give your table. \<column_name> represents the name of the column you want to create, and \<data_type> represents the data type of the column. \<constraint> is an optional parameter that sets constraints on the column. Insert Data: After creating a table, you can insert data into it using the following command:
INSERT INTO <table_name> (<column_name>, <column_name>, ...) VALUES (<value>, <value>, ...);

Replace \<table_name> with the name of your table, \<column_name> with the name of the column you want to insert data into, and \<value> with the value you want to insert.

With these steps, you have set up a MySQL database and created a table with data. Now you can move on to building your custom MySQL pipeline that can send HTTP requests to an external API.

MySQL to HTTP scenarios

here are 10 real-life scenarios where you might need to set up a MySQL to HTTP pipeline:

  • E-commerce website: As mentioned earlier, if you are building an e-commerce website with MySQL as the database, you may need to integrate with an external API that provides shipping or payment services. A MySQL to HTTP pipeline can be used to send data from the database to the API.
  • Healthcare applications: Healthcare applications often need to integrate with external systems that provide electronic health records or patient information. A MySQL to HTTP pipeline can be used to securely transmit data to these systems.
  • Financial applications: Financial applications may need to integrate with external systems that provide stock market data or banking services. A MySQL to HTTP pipeline can be used to send data to these systems.
  • Social media platforms: Social media platforms may need to integrate with external systems that provide analytics or advertisement services. A MySQL to HTTP pipeline can be used to send data from the database to these systems.
  • Customer relationship management (CRM) systems: CRM systems may need to integrate with external systems that provide customer support or sales services. A MySQL to HTTP pipeline can be used to send data from the database to these systems.
  • Manufacturing and logistics: Manufacturing and logistics applications often need to integrate with external systems that provide supply chain management or inventory control services. A MySQL to HTTP pipeline can be used to send data to these systems.
  • IoT devices: IoT devices often generate large amounts of data that needs to be stored and analyzed. A MySQL to HTTP pipeline can be used to send this data to external analytics or visualization tools.
  • Gaming platforms: Gaming platforms may need to integrate with external systems that provide player statistics or leaderboard services. A MySQL to HTTP pipeline can be used to send data from the database to these systems.
  • Government services: Government services often need to integrate with external systems that provide data on weather, traffic, or crime statistics. A MySQL to HTTP pipeline can be used to send data from the database to these systems.
  • Educational platforms: Educational platforms may need to integrate with external systems that provide content or assessment services. A MySQL to HTTP pipeline can be used to send data from the database to these systems.

Pre-requisite

  • A MySQL Server
  • A Kubernetes cluster (We will use the playground)
  • A webhook server (For testing use webhook for a free endpoint)

How to send customized events from MySQL to HTTP

Here are the steps you can follow to send email notifications from any MySQL event.

Step 1: Deploy Vanus on the Playground

  • Wait until the K8s environment is ready (usually less than 1 min).

  • Install Vanus by typing the following command:

    kubectl apply -f https://dl.vanus.ai/all-in-one/v0.6.0.yml

  • Verify if Vanus is deployed successfully:

$ watch -n2 kubectl get po -n vanus
vanus-controller-0 1/1 Running 0 96s
vanus-controller-1 1/1 Running 0 72s
vanus-controller-2 1/1 Running 0 69s
vanus-gateway-8677fc868f-rmjt9 1/1 Running 0 97s
vanus-store-0 1/1 Running 0 96s
vanus-store-1 1/1 Running 0 68s
vanus-store-2 1/1 Running 0 68s
vanus-timer-5cd59c5bf-hmprp 1/1 Running 0 97s
vanus-timer-5cd59c5bf-pqkd5 1/1 Running 0 97s
vanus-trigger-7685d6cc69-8jgsl 1/1 Running 0 97s
  • Install vsctl (the command line tool).

    curl -O https://dl.vanus.ai/vsctl/latest/linux-amd64/vsctl
    chmod ug+x vsctl
    mv vsctl /usr/local/bin
  • Set the endpoint for vsctl.

    export VANUS_GATEWAY=192.168.49.2:30001
  • Create an Eventbus to store your events.

    $ vsctl eventbus create --name mysql-http-scenario
    +----------------+--------------------+
    | RESULT | EVENTBUS |
    +----------------+--------------------+
    | Create Success | mysql-http-scenario|
    +----------------+--------------------+

Step 2: Deploy the MySQL Source Connector

  • Enable binary logging if you have disabled it (MySQL default Enabled). Create a new USER and grant roles, choose a unique password for the user.

To enable binary logging in MySQL, you need to perform the following steps:

  1. Open the MySQL configuration file, which is typically located at /etc/mysql/my.cnf on Linux or C:\ProgramData\MySQL\MySQL Server 8.0\my.ini on Windows.
  2. Look for the [mysqld] section of the configuration file, which contains various settings for the MySQL server.
  3. Add the following line to the [mysqld] section to enable binary logging:
log-bin=mysql-bin

This will tell MySQL to create binary log files in the mysql-bin directory. You can change the name of the directory if you prefer.

  1. Save the configuration file and restart the MySQL server for the changes to take effect:
sudo service mysql restart

or

sudo systemctl restart mysql
  1. Verify that binary logging is enabled by logging into the MySQL server and running the following command:
SHOW MASTER STATUS;

This will display information about the binary log files that are currently being used by the MySQL server. If binary logging is not enabled, this command will return an error.

  CREATE USER 'vanus'@'%' IDENTIFIED WITH mysql_native_password BY 'PASSWORD';
GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT ON . TO 'vanus'@'%';
  • Create the config file for MySQL in the Playground. Change MYSQL_HOST, MYSQL PORT, PASSWORD, DATABASE_NAME, and TABLE_NAME.
cat << EOF > config.yml
target: http://192.168.49.2:30002/gateway/mysql-http-scenario # Vanus in Playground
name: "quick_start"
db:
host: "MYSQL_HOST" # IP address of MySQL server
port: MYSQL PORT # port address of MySQL server
username: "vanus" # Username
password: "PASSWORD" # Password previously set
database_include: [ "<DATABASE_NAME>" ] # The name of your database


# format is vanus_test.tableName
table_include: [ "TABLE_NAME" ] # The name of your Table

store:
type: FILE
pathname: "/vanus-connect/data/offset.dat"

db_history_file: "/vanus-connect/data/history.dat"
EOF
  • Run MySQL Source in the background
  docker run -it --rm --network=host \
-v ${PWD}:/vanus-connect/config \
-v ${PWD}:/vanus-connect/data \
--name source-mysql public.ecr.aws/vanus/connector/source-mysql &

Step 3: Deploy the HTTP Sink Connector

To run the HTTP sink in Kubernetes, you will need to follow the below steps:

  • Create a Kubernetes deployment file (e.g., sink-http.yaml) that includes the following configurations:
cat << EOF > sink-http.yml
apiVersion: v1
kind: Service
metadata:
name: sink-http
namespace: vanus
spec:
selector:
app: sink-http
type: ClusterIP
ports:
- port: 8080
name: sink-http
---
apiVersion: v1
kind: ConfigMap
metadata:
name: sink-http
namespace: vanus
data:
config.yml: |-
port: 8080
target: http://address.com
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: sink-http
namespace: vanus
labels:
app: sink-http
spec:
selector:
matchLabels:
app: sink-http
replicas: 1
template:
metadata:
labels:
app: sink-http
spec:
containers:
- name: sink-http
image: public.ecr.aws/vanus/connector/sink-http:latest
imagePullPolicy: Always
resources:
requests:
memory: "128Mi"
cpu: "100m"
limits:
memory: "128Mi"
cpu: "100m"
ports:
- name: http
containerPort: 8080
volumeMounts:
- name: config
mountPath: /vanus-connect/config
volumes:
- name: config
configMap:
name: sink-http
EOF

  • Edit the configuration in it.
vi sink-http.yaml

NOTE: Remember to replace values of URL and Port.

Check out the results

  • Finally, you can create a subscription that will define how the events should be transformed before being sent to the sink connector.
  • You can use the following command to create a subscription:
Copy code
vsctl subscription create \
--name mysql-http-subscription \
--eventbus mysql-http-scenario \
--sink sink-http \
--transformer '{
"define": {
"user": "$data.user",
"password": "$data.passwprd",
"email": "$data.email"
},
"template": {
"User": "<user>",
"Password": "<password>",
"Email": "<email>"
}
}'

Here, we are creating a subscription named "mysql-http-subscription" that will consume events from the "mysql-http-scenario" Eventbus and send them to the "sink-http" sink connector. We are defining three variables using the "define" parameter: "user", "password", and "email", which will store the corresponding values from the incoming events. Finally, we are using the "template" parameter to create a JSON template that will replace the variables with their corresponding values in the transformed events. Once you have created the subscription, it will start consuming events from the Eventbus, transform them according to the specified rules, and send them to the HTTP endpoint using the sink connector.

Conclusion

In conclusion, connecting MySQL to HTTP endpoints can be a powerful tool for data integration and automation. By using Vanus, we can easily set up subscriptions to capture changes in MySQL databases and send them to HTTP endpoints in real-time, without the need for complex coding or configuration. This can enable a wide range of use cases, from syncing data between systems to triggering workflows based on database events. With the step-by-step guide and examples provided in this article, you should now have a good understanding of how to use Vanus to create MySQL-to-HTTP subscriptions and customize them using the transformer feature. We hope this article has been helpful in getting you started with this powerful tool and exploring the possibilities it offers for your data integration needs.

· 阅读需 4 分钟

Using Cloud infrastructure definitely costs money. It is best practice to keep track of your operating cost while running different services on the Cloud regardless of the Cloud Provider. In the article, I will talk about a particular Cloud Provider; AWS. I assume you are familiar with this Cloud Provider or at least have some knowledge about them. I will focus on a particular service they offer called AWS Billing which in plain terms is used to keep track of the cost incurred when you use AWS services. Let’s talk more about it in the next section.

Table of content

AWS Billing

With the help of the Amazon Billing console, you can manage your consolidated billing if you're a member of an AWS Organization, pay your AWS bills, track and report your AWS costs and consumption, and arrange your AWS usage and costs.

The Billing console works closely with the AWS Cost Management console. Both can be used to manage your spending in a comprehensive way. You can manage your ongoing payments and the payment methods linked to your AWS account using the billing console's tools.

When you register for an AWS account, Amazon Web Services automatically charges the credit card you provided. You can change the credit card AWS will use to make charges by viewing or updating your information at any time.

Next, we will talk about AWS Budgets, and why we need it

AWS Budgets

Source: https://www.reddit.com/r/ProgrammerHumor/comments/qbx03g/better_turn_off_aws_before_you_get_a_huge_bill/

Most times, we accidentally run some services like an EC2 instance and forget to turn it back off. It could even run for a month or months before we realize we have incurred a huge cost. This is why Budgets are very important. With AWS Budgets, you can set a threshold for your expenses and when it gets to that limit, AWS will alert you about it. You can then log in to your AWS Console and shut down such services.

How To Set Up AWS Budgets

  1. Log in to your AWS Console and search for Billing, Click on it and it will open the AWS Billing Page

  2. On the Tab to the left, select Budgets and then click Create Budget

  3. Select your budget type. Select Customize and in the next section, select Cost Budget, scroll down and click Next

  4. In the next step, - Set your Budget name, - The budget period (Daily, Monthly, Quarterly, Yearly), - Select the Budget renewal type you prefer (Recurring budget, Fixed budget), - Set your start month, - Set the budgeting method (Fixed, Planned, Auto-Adjusting) - Select your budget amount which will prompt a notification when it is exceeded - Finally, select All AWS Services in Budget scope You should see a page like the screenshot below

  5. Now, we will configure our alert system according to our set budget. We can set our alert based on percentage or actual value. If set as percentage, we can set a certain percentage level has to reached before we receive an alert. For actual value, we can set the actual amount for an alert trigger. In this example, I have set a budget of $5 and 80% threshold before I receive an alert. Next, I will set an email to receive the notification. AWS also offers other means of notification like Amazon SNS Alerts and AWS Chatbot Alerts.

  6. Review your configurations and click Create Budget. If successful, you will see your budget created in the Budget Home

If you see this, congrats! You have successfully set up a budget to notify you when you exceed the threshold of budgeted amount.

Vanus Connect Extra Feature

Setting up your budget is very important as a developer or business. In this article we have used Email to receive the notifications. What if we want to receive the notification in our Slack Channel? We can easily do that with Vanus Connect. Vanus Connect provides out-of-the-box Connectors that enable you to integrate with popular services or applications without writing codes. With a simple configuration file, Vanus Connectors connect to the external service and move data in and out of that service on behalf of user applications, allowing you to focus on your business logic. I have written an article on how you can receive your AWS Billing Reports on a Slack Channel using Vanus Connect. You can check it out here.

Conclusion

Setting budgets for your business is very crucial, you need to monitor resource usage and be informed when you exceed your threshold. AWS Budgets helps you do that.

· 阅读需 11 分钟

Welcome to my blog on how to get notifications from MySQL to email. For businesses and organizations that rely on MySQL to manage their data, staying informed about changes to the database is essential. However, manually monitoring the database for updates can be time-consuming and prone to human error.

Thankfully, Vanus provides a solution for this problem by allowing users to set up an event pipeline that automatically sends email notifications whenever a particular event occurs in the database. In this blog, I will provide a step-by-step guide on how to set up this feature and customize it to fit your specific needs. Whether you are a MySQL user who wants to streamline their database management, or a database administrator who needs to stay informed about updates, this blog will provide you with the knowledge and tools you need to set up email notifications for your MySQL database. So let's dive in and learn how to get notifications from MySQL to email!

· 阅读需 7 分钟

One of the most common scenarios when working with Amazon S3 is to perform specific actions whenever changes (e.g., file uploaded or file deleted) happen in the S3 buckets.

This article introduces an open-source solution to set email notifications on any S3 events with an open-source event streaming platform Vanus.